Python

VS Code 配置 Anaconda Python 环境

VS Code 配置 Anaconda Python 环境董同学是使用 PyCharm 进行 python 开发的老选手了,但同事们都在用 VS Code。为了更好的和大家交流,转身投入 VS Code 的怀抱(当然我都要)。当我兴致盎然打开 VS Code 软件,真丝滑(PyCharm 打开速度看电脑&#xff

python_jwt,一个超酷的 Python 身份验证和授权库!

目录前言什么是python_jwt库?安装python_jwt库使用python_jwt库python_jwt库的功能特性 1. 支持多种加密算法 2. 提供丰富的配置选项 3. 完全符合JWT标准规范示例代码python_jwt库的应用场景 1. Web应用身份验证 2. API身份验证 3. 单点登录(SSO)系统 4. 安

python uv 使用教程

以下是 uv 的使用教程。uv 是一个由 Astral 开发的超快 Python 包安装工具和解析器,使用 Rust 编写,旨在替代 pip、pip-tools 和 virtualenv,提供更快的性能和更好的依赖管理。 1. 安装 uv 可以通过以下任一方式安装 uv: 1.1 使用 pip 安装(推荐)pip

Python酷库之旅-第三方库Pandas(154)

目录一、用法精讲701、pandas.Timestamp.utcnow方法701-1、语法701-2、参数701-3、功能701-4、返回值701-5、说明701-6、用法701-6-1、数据准备701-6-2、代码示例701-6-3、结果输出702、pandas.Timestamp.utcoffset方法702-1、语法702-2、参数702-3、功能702-4、返回值702-5、说明702-6

【Python】【数据分析】Python 数据分析与可视化:全面指南

目录 1. 环境准备 2. 数据处理与清洗 2.1 导入数据 2.2 数据清洗 示例:处理缺失值 示例:处理异常值 2.3 数据转换 3. 数据分析 3.1 描述性统计 3.2 分组分析 示例:按年龄分组计算工资的平均值 3.3 时间序列分析 4. 数据可视化 4.1 基本绘图 示例

AI 开发工程师成长路径:从 Python 到量子计算的 12 个月计划

本文为 AI 开发工程师量身打造了一份 12 个月的成长计划,涵盖从 Python 基础到量子计算的完整学习路径。每月设定明确目标,从 Python 核心语法、数据处理库入门,到机器学习算法、深度学习框架实践,再到自然语言处理、计算机视觉等应用领域,最后逐步过渡到量子计算基础及 AI 与量子结合的前沿内容。计划注重理论与实践结合

Python文本数据清洗五步法:打造高质量NLP分析数据

文本数据清洗对任何包含文本的分析或机器学习项目来说都是至关重要的,尤其是自然语言处理(NLP)或文本分析类的任务。原始文本通常存在错误、不一致以及多余信息,这些都会影响分析结果。常见问题包括拼写错误、特殊字符、多余空格以及格式不正确等。手动清洗文本数据不仅耗时,而且容易出错,尤其是在处理大规模数据集时。Python

python wxauto 库

Python的wxauto库是一个专注于微信自动化操作的第三方工具,支持消息发送、聊天记录获取、自动回复、文件处理等功能。以下是其核心功能、使用方法及注意事项的总结: 一、核心功能与示例 获取好友与群组信息 可提取好友的昵称、备注及群组信息: from wxauto import WeChat wx = WeChat() friends &#6