群体行为(不要碰到对方) 书名:代码本色:用编程模拟自然系统 作者:Daniel Shiffman 译者:周晗彬 ISBN:978-7-115-36947-5 第6章目录 6.11 群/体行为(不要碰到对方) 1、ArrayList 在粒子系统类中,我们用ArrayList存放粒子的列表。我们会在本例中做同样的事情:把一组Vehicle对象存放到ArrayList中。 ArrayList<Vehicle> 人工智能 2025年08月27日 158 点赞 0 评论 3303 浏览
优化算法matlab实现(八)人工蜂群算法matlab实现 注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。 注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。 注意:此代码实现的是求目标函数最大值,求最小值可将适应度函数乘以-1(框架代码已实现)。 1.代码实现 不了解人工蜂群算法可以先看看优化算法笔记(八)人工蜂群算法 实现代码前需要先完成优化算法matlab实现(二)框架编 人工智能 2025年06月15日 86 点赞 0 评论 3320 浏览
kotlin<第八篇>:协程的启动与取消 一、启动构建器 launch与async构建器都用来启动新协程: 1、launch,返回一个Job,并且不附带任何结果值 2、async,返回一个Deferred,Deferred也是一个Job,可以使用.await()在一个延期的值上得到它的最终结果。 等待一个作业: 1、线程切换 launch(Dispatchers.Default) { println("1") 人工智能 2025年08月04日 102 点赞 0 评论 3384 浏览
从零开始强化学习(四)——策略梯度 四. 策略梯度(Policy Gradient) 4.1 期望奖励(Expected Reward) 在强化学习中有3个组成部分:演员(actor),环境(environment)和奖励函数(reward function) 演员就是一个网络,输入状态,输出动作 环境就是一个函数,输入状态和动作,输出状态。环境是基于规则的规则,是确定不变的 奖励是在某一个状态下采取某个动作能够获得的分数。环境是 人工智能 2025年05月01日 106 点赞 0 评论 3452 浏览
【读论文】AlexNet (ImageNet Classification with Deep Convolutional Neural Networks) 这是一片十年前的文章(2012年),让我们回到十年前来看看Alex小哥、Hinton大佬和他的小伙伴们是怎么设计神经网络的。 论文下载地址: 李沐老师的精读视频: 人工智能 2025年05月07日 57 点赞 0 评论 3467 浏览
扩散模型 常见的生成模型(Generative Models)如 GAN、VAE 和基于流( Flow-based )的模型。他们在生成高质量样本方面取得了巨大成功,但每个都有其自身的局限性。 GAN 因其对抗性训练性质,其训练过程难以收敛以及生成多样性欠佳。 VAE 依赖于替代损失(surrogate loss)。流模型必须使用专门的架构来构建可逆变换。 扩散模型( Diffusion Models ) 人工智能 2025年07月07日 197 点赞 0 评论 3480 浏览
深入剖析 AI 大模型的反向传播原理 深入剖析 AI 大模型的反向传播原理:从理论到源码实现 本人掘金号,欢迎点击关注:掘金号地址 本人公众号,欢迎点击关注:公众号地址 一、引言在当今人工智能领域,大型语言模型如 GPT - 3、BERT 等取得了令人瞩目的成果。这些模型在自然语言处理、图像识别等众多任务中展现出强大的能力。而在训练这些大模型的过 人工智能 2025年04月21日 131 点赞 0 评论 3488 浏览
《教育心理学》学习2-3 位置法 如果说图像法是一种帮助编码记忆材料的方法,那么“位置法”(method of loci,MOL)就是一种帮助检索材料的“线索”。许多人在记忆时往往会结合图像法和位置法进行记忆。位置法是目前最主要的记忆术之一,相传是古希腊诗人西蒙尼停斯(Simonides of Ceos)首先提出的。如今很多一流的记忆大师(例如世界记忆冠军王峰等)或多或少都会使用这种方法。 想象一条你熟悉的路线,比如从 人工智能 2025年09月08日 52 点赞 0 评论 3513 浏览
多重检验矫正p值 因为P值的阈值是人为规定的,无论是多小的P值,也仅仅能代表结果的低假阳性,而非保证结果为真。如果检验一次,犯错的概率是5%;检测10000次,犯错的次数就是500次,即额外多出了500次差异的结论(即使实际没有差异)。即使P值已经很小(比如0.05),也会被检验的总次数无限放大。比如检验10000次,得到假阳性结果的次数就会达到 5%*10000=500次。 这时候我们就需要引入多重检验来进行校正 人工智能 2025年09月06日 33 点赞 0 评论 3519 浏览