人工智能

【R实战 基本方法】 七、基本统计分析

这里是佳奥!继图形学习后,我们开始统计分析的部分。 在数据被组织成合适的形式后,我们也开始使用图形探索数据,而下一步通常就是使用数值描述每个变量的分布,接下来则是两两探索所选择变量之间的关系。其目的是回答如下问题: 1、各车型的油耗如何?特别是,在对车型的调查中,每加仑汽油行驶英里数的分布是什么样的?(均值、标准差、中位数、值域等。)2、在进行新药实验后,用药组和安慰剂组的治疗结果(无改善、一定程

【哈佛大学:计算生物学 & 生物信息学】学习记录(三)

局部比对算法 —— Smith-Waterman Algorithm Swimt-Waterman算法本质上是一种Dynamic Programming(动态规划算法),和Needleman算法有许多相同之处。其分为3个步骤:Initialization —— Matrix Filling —— Trace Back。 Swith-Waterman算法相较于Needleman-Wunsch算法最大

AI外挂RAG:大模型时代的检索增强生成技术

 目录引言一、RAG是什么? 二、RAG为什么会出现?三、RAG的工作原理四、RAG的技术优势五、RAG的应用场景六、RAG对AI行业的影响七、RAG面临的挑战引言        在人工智能领域,大型语言模型(LLM)如ChatGPT、DeepSeek等已经展现出惊人的能力,但它们也面临着一些固有局限&#xff1a

目标检测算法

(一)目标检测算法的介绍 (1)R-CNN 算法的核心是,首先使用启发式搜索算法来选择锚框。使用与训练模型对锚框内的特征进行抽取。训练一个SVM来对类别分类。然后是训练一个线性回归模型来预测边缘框偏移。 rcnn 这里有一个重要的问题是,锚框的大小是不确定的。那就出现了一个问题,怎么来组成一个形状一样的batch呢?这个模型使用的是兴趣区域(Rol)池化层。 rol pool

CompletableFuture

一、定义 CompletableFuture提供了非常强大的Future扩展功能,可以帮助我们简化异步编程的复杂性,提供了函数式编程的能力,可以通过回调的方式处理结果,也提供了转换和组合CompletableFuture的方法。 可能代表一个明确完成的Future,也可能代表一个完成阶段,支持在计算完成以后触发一些函数或执行某些动作 实现了Future和CompletionStage接口

JAVA 框架知识简单理解

一、框架的本质 1. 常见的框架 常见的框架 2. 框架学习的思想 找到逻辑基点 示例:例如Spring它的核心思想是控制反转,需要我们将自己的Java对象提供给Spring管理,管理的时候需要一个容器用来存放这些对象。这个容器可能是什么 大胆假设 示例:利用application.getBean()这个方法可以获得bean,而在调用API的过程中,我们会发现它需要传入一个字符串,能

Enterprise Data At HUAWEI(三)

基于数据特性的分类管理框架 华为根据数据特性及治理方法的不同对数据进行了分类定义:内部数据和外部数据、结构化数据和非结构化数据、元数据 以统一语言为核心的结构化数据管理 基础数据治理 基础数据用于对其他数据进行分类,在业界也称作参考数据。基础数据通常是静态的(如国家、币种),一般在业务事件发生之前就已经预先定义。它的可选值数量有限,可以用作业务或IT的开关和判断条件。当基础数据的取值发生变化的时候

强大的AI网站推荐(第一集)—— Devv AI

网站:Devv AI 号称:最懂程序员的新一代 AI 搜索引擎 博主评价:我的大学所有的代码都是使用它,极大地提升了我的学习和开发效率。 推荐指数:🌟🌟🌟🌟🌟🌟(超5星) 难度指数:需要