人工智能

先为不可胜——中小企业生存之道38

第五章 第4节 胜任特征模型         企业选人和用人需要科学的标准,也就是常说的职务说明书或者叫岗位描述。岗位胜任特征模型就是主要解决企业中不同岗位需要明确的岗位关键胜任力素质标准量化的问题,解决实践中我们遇到的什么素质类型的人能够在这个岗位上产生高绩效的问题。         胜任特征指能将某一工作(或组织、文化)中有卓越成就者与表现平平者区分开来的个人的潜在特征,它可以是动机、特质、自

大模型选型“炼狱”与终结:一份来自普通开发者的AI Ping深度评测报告

在人工智能应用开发的浪潮中,每一位开发者或许都经历过相似的“启蒙时刻”:初次调用大模型API,看到屏幕上流畅涌现出精准答案时的兴奋。然而,当兴奋褪去,真正将大模型集成到生产环境时,一场更为严峻的考验才刚刚开始。这不再是关于模型能否回答“地球为什么是圆的”,而是关乎你的应用能否在真实的用户压力下&#xf

【AI云原生】1、Function Calling:大模型幻觉破解与Agent底层架构全指南(附Go+Python实战代码)》

引言:大模型的"致命短板"与Function Calling的诞生当我们向大模型提问"2024年诺贝尔物理学奖得主是谁"时,它可能会自信地给出一个不存在的名字;当计算"12345×67890"时,它可能返回一个看似合理却错误的结果——这就是大模型的"幻觉"问题,也是制约其在专业领域应用的核心瓶颈。大模型为何会产生幻觉?根本原因有两点:一是训练数据的局限性,模型无法覆盖实时更新的信息(如最新奖项、

多维学习

不读书的人,没什么好焦虑的。 学习的秘密在于同时调动多维度感官。 真正的学习绝不仅仅涉及思维这一个维度,它包含视觉、听觉、味觉、嗅觉、触觉等所有感知维度。 知识和智慧不是一回事,智慧是去实践。知识中的很大一部分存在于潜意识中,这部分知识如果不去运用就得不到很好的发展。 纸上的知识是一维的,而躬行出来的认知则是多维的。所以在人的成长过程中,除了读书,更重要的还是运用实践、经世致用啊! 对于学习,特别

R语言-超大型数据框与稀疏矩阵的切片-处理as.matrix方法的“problem too large”异常

单细胞组学数据分析接触到的项目大都使用平面文件(rds,txt,tsv,csv,mtx)进行数据存储。有时候,我们会操作相当大的平面文件,而超大型的数据集如(一个包含约 100 万个细胞和约 3 万个基因的表达矩阵)在进行数据类型转换等处理的时候会遇到异常Error in asMethod(object) : Cholmod error 'problem too large',指的是其中 as.

一文讲完random:python中的随机模块

我们在python工程和数据分析中经常用到随机的操作,比如随机生成某个值,对一串数据进行随机排序等等。random是python一个很强的第三方库,可以实现常用的随机算法。 安装:pip install random 一:生成随机的数字 0~1之间的随机小数(float):random.random() a~b之间的随机小数(float):random.uniform(a, b) [a, b)之

《AI大模型应知应会100篇》第5篇:大模型发展简史:从BERT到ChatGPT的演进

第5篇:大模型发展简史:从BERT到ChatGPT的演进 摘要近年来,人工智能领域最引人注目的进步之一是大模型(Large Language Models, LLMs)的发展。这些模型不仅推动了自然语言处理(NLP)技术的飞跃,还深刻改变了人机交互的方式。本文将带领读者回顾大模型发展的

future——加速你的单细胞分析

由于单细胞数据本身就具有数据量大的特点,所以在进行单细胞数据分析时往往会出现运行时间太长的问题。 不过好在 Seurat 为我们提供了部分函数与 future 并行计算的链接。 安装future future已经托管到CRAN上了,所以我们可以直接通过CRAN对其进行安装: install.packages("future") 支持future并行计算的函数 NormalizeData